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ABSTRACT

A system is proposed for grid allocation and differencing of apparently general applicability to purely marching-

type systems of equations of fluid dvnamics.

The method is based on casting of the equations into the conservation

form, which then permits use of a staggered space-time grid system with interpolations required only in certain

linear terms.
experiments have been successfully performed.

The method is illustrated by application to two systems of equations, on one of which numerical
Advantages and drawbacks of the method are described in com-

parison to other currently used grid systems, and the possibility and desirability of parametric simulation of turbulent

eddy exchange processes are discussed.

1. INTRODUCTION

The recent development of methods of numerical inte-
gration of the equations of fluid dynamics in a more-or-less
primitive form, i.e., of first order, except for diffusion
terms, is focusing attention upon new aspects of numerical
analysis. During the early development of geostrophic
or balanced models which involved a vorticity equation,
perhaps the most pressing practical problems were to
solve rapidly and accurately certain rather complex
elliptic second order partial differential equations. In
dealing with undifferentiated systems one finds that the
basic equations are much simpler to apply but must, for
the sake of computational stability, be applied at very
short time intervals compared to the time scales of the
significant meteorological phenomena. 'This is because
the normal Courant-Friedrichs-Lewy stability ecriterion
requires essentially that motions or waves allowed in the
system not be able to travel from onc grid point to the
next in one time step, and the undifferentiated systems
usually allow faster-moving waves than those of metcoro-
logical interest. It is also noted that the boundary con-
ditions and various consistency requirements, if not more
complex, are more critical when a single computation run

may include several thousand time steps. Under these
circumstances it is desirable to examine the time-space
grid data allocation and differencing scheme with a view
toward eliminating, if feasible, some of the redundant
time resolution and thus save time and computation
expense. It also appears that when integrating a set of
non-linear equations over a moderate number of time
steps, say several hundred, a certain form of instability
arises, which is related to spatial truncation error in the
non-linear terms. This non-linear instability, discussed
by Phillips [7], seems to oceur much more rapidly in
primitive equations models than in those using a vorticity
equation, though it is uncertain whether this is due to
differences in the physical or mathematical behavior of
the systems. At any rate therc appear to be several
possible devices for climination of this instability, which
will be mentioned later.

As a method of eliminating some of the computational
redundancy, Eliassen [3] proposed a method of handling
a two-level primitive equations model, in which variables
are staggered in space and time in a somewhat complex
manner. The principle on which the system was based
was that the linear terms of the equations would be
available at the correct grid points with minimal trunca-
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tion error, but that certain non-linear terms would be
formed from products of interpolated wvalues. The
reason for doing this, presumably, was that the linear
terms of the motion equations, the pressure gradient and
Coriolis terms, are generally an order of magnitude
larger than the others and errors in these terms might be
thought to be most damaging. On the other hand the
advective terms may contribute as much, and in many
cases much more, toward significant rates of change of
quantities than the combination of the ncarly balanced
linear terms. As long as truncation error does not disturb
the existing quasi-balance between the linear terms
which is most pronounced for the larger scales of motion,
there seems no reason to require interpolation to be done
only on the advective terms. It will be shown that the
truncation error of interpolation in the proposed system is,
at most, of the same order as that arising from the finite
difference pressure gradient term, but that the latter is
évaluated with less truncation error in the Eliassen grid
than in that proposed.

Hinkelmann [4] and Smagorinsky [13] have successfully
applied hydrostatically filtered equations of two-dimen-
sional flow without the use of time or space staggering of
the variables. In both of these models the external
gravitational motions were filtered out by the vanishing
boundary conditions on dp/dt, and it was thercfore neces-
sary to solve a Poisson equation at each time step. Both
used the marching equations in the conservation form, and
it was found that non-linear computational instability
ensued, in the absence of specific damping terms, within
two or three days of commencement of integration.
Phillips [8] has recently developed a barotropic divergent
(free surface) primitive equations model, in which the
Eliassen grid system has been applied, with central time
and space differencing, and also with a one-sided space
difference scheme [9] oriented according to the wind
direction and related to that originally proposed by
Courant, Isaacson, and Rees {1]. The latter method
introduces some computational damping and seems

effectively to prevent development of non-linear
instability.
2. PRINCIPLES OF PROPOSED SYSTEM AND
APPLICATION

A method will now be presented for stepwise integration
of initial-value boundary-value problems using non-linear
hydrodvnamic equations. The method appears to be
generally applicable to meteorological problems when the
system of equations is of an explicit marching type, that
is when there are no physical approximations or con-
straints which involve the solution of an elliptic equation
at each time step. It is evidently not particularly suitable
for application to, for example, the barotropic vorticity
equation, or to primitive equations models such as those
of Smagorinsky and Hinkelmann in which external
gravity waves are filtered out, because in these systems
further interpolations would be necessary. A principal
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feature of the method is the casting of the equations into
the conservation form, the form in which all advective
terms appear as flux divergences. When this is done it
becomes very natural to set up a central time and space
differencing system on a space-time staggered grid, in
which interpolations may be required only in certain
linear terms. The method of interpolation is largely
optional, but time interpolation is generally most accurate.
II frictional terms arc present (and it is believed that they
generally should be) these are most naturally computed by
forward differencing, which then simultaneously preserves
linear computational stability in these terms. The
method will be illustrated by application to a free surface
model similar to that of Phillips.

If the atmosphere is considered as a homogeneous in-
compressible fluid with a {ree upper surface, whose height
is  ¢/g, the two-dimensional, hydrostatically filtered
equations of motion may be written, in Cartesian coordi-
nates, as

ou;
ot

ou; o} 1 o7y '
ity S fe g o2 O M)

z; or; ¢ O,
where e;; 18 the permutation tensor, equal to plus or
minus unity for 1, 7, k=1, 2, 3 or 2, 1, 3 respectively.

Upon applieation of the viscosity hypothesis, but
without assuming constant viscosity, the frictional stress
may be written as

le:d)K

ouy | Oy _ 26, %) 2)

ox; Ox; 6y Oxy

The repeated index implies summation, so that 8, equals
two in this case. If we were considering a physical
system whose characteristic Reynolds number was small,
for example a “‘dishpan’ experiment, we could reasonably
assume ¢K constant and the stress terms would reduce to
the common Laplacian form. For the atmospheric
system we want the stress tensor to describe the transfers
ol energy, momentum, ete., performed by turbulent eddy
motions, the scales of which range between that of the
smallest explicitly deseribed motions and that of molecular
dissipation. Smagorinsky [14] proposes that for fully
turbulent flow K be made proportional to the deforma-
tion, 1.e.

Tij

K= (kl)* oK

(3)

where [ is the scale of the smallest resolvable motions (the
grid scale in a finite difference formulation) and % is a
universal constant of order unity. From consideration of
the similarity of the above expression to that frequently
applied in turbulent boundary layer theory we consider &
to be analogous to the Kéarmédn constant. The appear-
ance of a particular length scale in the definition is a
reflection of the essential correspondence of the frictional
stress to the Reynolds stress, also defined in terms of the
same length scale.

The form proposed by Smagorinsky is similar to one
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applied by von Neumann and Richtmyer [10] in their
“pseudo-viscosity’’ method for representing shock waves.
It has been introduced here because of its seeming impor-
tance in elimination of the non-linear computational
instability which is otherwise permitted by the proposed
grid differencing scheme (and many others in current use).
The physical significance and justification of thesc terms
will be shown by Smagorinsky and are not discussed
further here.

The continuity equation is a prediction equation for the
height of the free surface, written as:

0¢ | O(Puy)
ot ' oux =0 )
1f (4) is multiplied by %; and combined with (1), a momen-
tum equation is obtained, that is

o(pu, )

ot o (¢u Uy)— fe 30U ]+a(¢ /2)

aTij =
—%, (5)

We now assume that motions within a rectangular area
of dimensions L; are c¢yclicaily symmetric in all dircetions,
so that the boundary conditions may be written, in terms
of an arbitrary dependent variable x, as

x @y, w2y ) =x @ Ly, 25, ) =x (a1, 27k Ly, 7). (6)
Equations (4), (5), and (6) arc a complete set of prediction
equations for the dependent variables, ¢u;, ¢, written in
the conservation form.

We divide the L, X L, area into pq grid squares, each of
area A?, where p and ¢ are both even numbers. Letting /
and m represent the index numbers of grid intersections,
and n a time index, we define

X =x(IA, mA, nAl) =X, .=x",, (M

the latter two equalities proceeding directly from (6).

Let us now specify all the dependent variables at the
even intersections ([+m even) for even n and also all of
them at the odd intersections for odd n. We then may
approximate (4) and (5) by finite difference equations as
follows:

At
¢'l('n”1[1) :d)t(,nrr:l) _K [(d)ul) +1,m™ (¢71]) 1—1,m

+(¢U2) L,m+1"" (¢u2) 1, m—lj(m (S)
At
(pu)"a Y = (d)ul){'”,;”———& [(Pu*+*2—111) 141,m
— (U 2+ ¢¥2—711) =1, m - (PUL U —T12) 1 s
— (PUUy—T12) 1, 1) - 2f AL (Pu2) ™, (9)
t
(¢u2)z(nntl)_(¢u Y v— [(¢U1Uz*"721)1+1,m
- (¢u1u2—721) -1, m+ (¢U22+¢2/2—T22> Lmtl (¢U22

+ 22— 722) 1, m1]™ —2fAt (puy) 7. (10)
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The stresses and the viscosity cocflicient K may also be
approximated, from (2) and (3) as:

(ri){m=— (T22) "= (M KV IA) [ (W) 141, m

= () 11, = (U2) g1 (U2) 1, ] 70 (11)
(T12) o= (1) Jo= (S K P [A) [ (1) 1, et
— () 11t () pt, e (U2) o1, ] 70 (12)
Ko o=k A (1) 41— (1) 121, (U2) 1, 1+ () 1, 1]
) 1= (W) 1memrt (U2) 1,0 (W) 1,212 (13)

The bar over the Coriolis terms in (9) and (10) indicates
that some form of interpolation or replacement must be
done, since the quantities involved are not defined at the
proper time-space grid points.

Four possible methods of interpolation are suggested.
Spatial interpolation would involve replacement of the
barred quantities in (9) and (10) as follows, according to
either a 2-point or 4-point formula.

(‘bul)l(,n)n iS 1‘0Pluced by 1/2 [(d)ul) l,m+1+(¢ul)l,m—1](n)

and (14)
(puz) (%, is replaced by 1/2 [($112) 141, m+ ($12) 1-1,0]
-
(@), is replaced by 1/4 [(¢14) 141,m
(1) 11, (U)o 1+ (DUs) g ] ™. (15)

Other methods of spatial interpolation would involve
somewhat larger truncation errors. For time interpola-
tion one would use similar replacements as follows:

(ou)m is replaced by 1/2 [($u)n 0+ (du) %] (16)
where (9) and (10) would then have to be linearly com-
bined to eliminate the implicit terms. The resulting
svstem will be shown to have negligible truncation error
in the Coriolis terms, as well as a slightly less restrictive
computational stability criterion. A simpler method in-
volving somewhat larger but still acceptable truncation
errors is a forward-backward scheme similar to that in-
troduced by Courant, Friedrichs, and Lewy [2] for a linear
wave problem. In this case the barred quantities in (9)
and (10) are replaced as follows:

(pu1)(™, is replaced by (¢uy)",
(17)

(pus)™, is replaced by (¢uy) =40,

[t may be noted that the {rictional terms in (11), (12),
and (13) involve velocity derivatives at time index (n—1)
weighted by ¢ values at time index (n). This inconsist-
ency (f such it 1s) scems from experience to be totally
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unimportant. It has, in fact, been convenient to compute
similar frictional terms over considerably longer time steps
than the remainder of the calculations, and little error is
so introduced. Tt is well known, however, that straight-
forward central differencing for the diffusion equations
may lead to linear computational instability (see, e.g.,
Richtmyer [10]).

With regard to initial conditions, it may be desired to
begin computations with values of variables all pertaining
to the same time, rather than in the staggered grid. In
.this case it is satisfactory to make an initial half-time step,
and similarly to interpolate between time steps in order
to obtain a simultaneous display at a later time.

3. TRUNCATION ERROR AND COMPUTATIONAL
STABILITY

We shall not attempt to give a complete discussion of
the computational stability and truncation error of finite
difference formulations of (1)-(4). We have, however,
determined the stability properties of linearized versions
of several finite difference equivalents of the frictionless
system and first approximations to the truncation errors
of various terms in the motion equations. This material
is assembled in tables 1 and 2. The expressions given for
truncation error are the lowest order terms of the Taylor
series, and are presented in this form for comparative
purposes rather than for any attempt at numerical eval-
uation. The grid formulations used include (a) the nor-
mal advective form, based on equation (1) with central
differencing and mno interpolations; (b) the proposed
staggered grid system with 2-point and 4-point space in-
terpolations, time interpolation, and forward-backward
treatment of the Coriolis terms; and (c¢) the Eliassen grid
as used by Phillips [8]. Figures 1 and 2 illustrate the
essential difference between these grid systems. In the
normal advective scheme all variables are defined at all
intersections of figure 1, while in the proposed staggered
system all quantities are defined for even time-steps at
grid points marked “E’” and for odd time at points “O”.
In the Eliassen scheme the geopotential, ¢, is defined on
grid “A” of figure 2 for even time and grid “D” for odd
time, u, is defined on grid “B” for odd time and grid “C”
for even, and u, on grid “C” for odd time and grid “B”
for even. The grid interval shown on figure 2 was altered
to (1/42) of that defined by Phillips in order that the
truncation errors for the various systems be comparable.
Thus in all cases the total number of points describing a
given field, combining odd and even time steps, is given
by the ratio of the total area to A®

Table 1 shows that the non-viscous linear computational
stability characteristics are similar for all the grid-differ-
encing systems considered. The differences lie in the
Coriolis term, which is ordinarily two to three orders of
magnitude smaller than that arising from the external
gravity wave propagation. It may be easily demon-
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Ficure 1.—Grid system for normal advective scheme, in which all
variables are defined at all intersections; and for proposed
staggered system, in which all quantities are defined for even
time-steps at points E and for odd time at points O.

strated that the friction terms, computed in the form de-
scribed, exert an effect on the stability criterion of at
most the same order of magnitude as the advection.
Upon careful examination of table 2 we find that
truncation errors also do not present any clear superiority
of one system over another. Truncation errors in the
geostrophic terms are certainly minimized in the Eliassen
scheme, because of the smaller differencing interval in the
pressure term. Nevertheless the unavoidable error of
first-order differencing of the pressure term is of the same
order as that of spatial interpolation of the balancing
Yoriolis term, so that introduction of the latter breeds no

Table 1.—Linear computational stability criteria

Normal advective SAZ > w20+ (FA)?

Space-interpolated staggered % > Jug) 29+ (fa)?
Time-interpolated staggered % > |uil +20

AL fm——
a0l V2ot (fa)?

Forward-backward staggered

Eliassen

2> ] 420+ (78)72
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Ficure 2.—The Eliassen scheme in which the geopotential ¢ is
defined on grid A for even time and on grid D for odd time,
u; is defined on grid B for odd time and on grid C for even time,
and s is defined on grid C for odd time and on grid B for even
time.

new sources of error. Proper comparison of the various
methods of interpolating the Coriolis term is dependent
upon specification of characteristic time and space scales
of motion. For typical meteorological motions (small
gravity-wave amplitude) the tune interpolation has the
smallest error, only a little larger than that of the time
derivative term. The error of the forward-backward
scheme is considerably larger and may be nearly as large
as that of the space-interpolation method, depending on
the spatial smoothness of the fields. Comparison of the
truncation errors associated with the non-linear terms is
more difficult. It appears, however, that terms of all
systems are of roughly the same size except the Eliassen
component along the wind, which is about four times
larger.

All results available to the author indicate that all the
systems considered above exhibit non-linear computational
nstability unless their short-wave components are effec-
tively damped. Our understanding of this phenomenon
is, however, severely restricted by the present lack ol
general methods of its analysis.  Phillips’ [7] method may
be used to prove instability, in some cases, but it can
never prove stability. Trial-and-error imnethods are rather
inefficient, with the large number of possible methods to
choose among. Shuman [11] has, however, recently per-
formed one-dimensional numerical experiments, the re-
sults of which raise the possibility that certain reasonable
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TABLE 2.—Truncation errors of terms in equalions of notion
1. Pressure derivative term; e.g. 2
Dxl
2 03,
Normal adveetive —A— Qi
6 I13
- 1 A2 03¢
Staggered —
Staggere 31203
s 2 03¢
Eliassen 12 on 3
2. Coriolis term; e.g. fu,
Normal advective None
P, . i S A2 0% (¢un)
2-point space-interpolated staggered 38 ong
. . f A2
+-point space-interpolated staggered 516 VZ{pus)
202 v
Time-interpolated staggered :Z ([g)~a—(gzél2)
Forward-backward staggered 3) (At) a(?t”)
Eliassen None
o e . . Quy
3. Time derivative, e.g. S0
2 03,
Normal advective (Af? aTZ"I
o 1 (A1)? 03(gpus)
Staggered s 6 RYE
R (A8)? O3y
Eliassen j 6 on
_ 1
4. Advection term along wind component; e.g. ulgz—l
1
2 3
Normal adveetive % uy gTu,;
“ 1A% O%(ous?)
Staggered 36 orp
e A2/ 02 . Q0 Oupl
Eliassen 6 (axlz—l—d 52 ) ox;
5. Adveetive term across wind component; e.g. uzv%
’ oxsy
N ! . A2 b31l1
Normal advective o ors
‘ 1 A2 Q¥ (puyus)
Staggered 36 ot
L A? L, 02 02 '\ Ouy
Eliassen 2 U2 (3 w w b—x;
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difference schemes may be stable without damping. If
these results can be shown to apply to a more general
model we may have a close counterpart to the spectral
method which in some cases may conserve energy identi-
cally.

The eddy-viscosity term proposed by Smagorinsky
obviously exerts a damping which is highly selective in
scale. For a given amplitude of disturbance kinetic
energy and a given grid interval the value of K is propor-
tional to the finite difference approximation of the de-
formation amplitude. When central differencing is used
each contribution to this amplitude will be proportional
to sin (27A/\), where A is the wavelength of a motion
component. Thus damping is maximized for wavelengths
at and near 4A and actually vanishes at A=2A. BSince
components with wavelengths between 2A and 4A are
most directly involved in non-linear instability it is there-
fore suggested that the viscosity term prevents the insta-
bility indirectly. That is, it reduces the amplitudes of
the intermediate scale (stable) components which would
otherwise generate small-scale (unstable) components.
If this is the case we may have reasonable confidence that
the important effects of the analytie viscosity terms (2),
(3) are fairly well approximated by their finite difference
formulation.

Other methods that have been used to prevent non-
linear instability do more or less violence to the physics.
Probably the worst method is to use a constant viscosity,
or its equivalent in a difference system or smoothing
filter. Experiments have shown that in order to be
effective the viscosity must be large enough so that the
greatest characteristic grid Reynolds number of the field is
of order unity, where by contrast we note that
Smagorinsky’s eddy viscosity is of such a form that the
grid Reynolds number 1s everywhere of order unity. In
order to simulate motions ol a turbulent fluid one would
then have to carry millions of grid points, otherwise the
system would be essentially laminar and the large-scale
components severely oversmoothed. Lax [6] suggested a
space-time staggered grid for integration of equations in
the conservation form. Forward-time differencing was
used and variables at the previous time were space-
averaged before differencing. This process effectively
introduces a very large constant computational viscosity,
essentially equal to A%/4 Af, and the grid Revnolds number

is of order u/yp<l. On somewhat the opposite extreme
of selectivity is the method used by Phillips [7] in his
general circulation calculations, which consisted of Fourier-
analyzing the motion field and removing all components
with wavelengths less than 4A.  Somewhere between these
extremes lies the one-sided difference scheme first sug-
gested by Courant, Isaacson, and Rees [1], in which the
advective form of the vector equation of motion is used
and spatial derivatives are taken along the characteristics
(streamlines) upward of the central point. Variants of
this method have been used by Kasahara [5] and Phillips
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[9]. Motions are damped, but rather selectively, and the
general results appear to be very similar to those obtained
using Smagorinsky’s eddy [riction [orm, although the
physical significance is unclear.

4. OTHER COMPUTATIONAL FEATURES

An advantage of the proposed system, in comparison
with, for example, the Eliassen grid, is the vanishing trun-
cation error of volume integrals (numerical sums) of the
prediction variables. Smagorinsky [12] has shown that
this is assured by application of certain auxiliary boundary
conditions (mainly symmetry conditions) and these in
turn prevent development of another type of computa-
tional instability. The importance of thisfeature probably
dependssomewhat on the use to which the particular predic-
tion system is put. For general circulation studies, where
integrated momentum budgets, heat budgets, etc. are
of fundamental interest, it seems very desirable to know
that, for example, the mean geopotential is only a function
of the boundary conditions. For operational forecasting
this may be of less direct interest, though perhaps com-
forting knowledge. In any case it has proven to be
valuable for “debugging”” machine program logic, for deter-
mination of machine errors, and for evaluation of round-
oft errors.

The proposed system has certain other practical advan-
tages lor application to a high-speed electronic computer,
not all of which are shared by other systems. First, only
one set of wvariables need be stored for cach point, in
distinction to the two or three required for a non-staggered
grid using forward-differenced viscous terms. Second,
there are just two kinds of points, rather than four as in
the Eliassen system, which makes the logic somewhat
simpler. On the other hand, application of any staggered
grid system adds definite logical complications to a
machine program, thus increasing the programming and
check-out time and, to a small extent, the time spent by
the machine in logical testing.

5. APPLICATION TO OTHER MODELS
The proposed method was originally developed for, and

applied to, integration of a set of two-dimensional (z;, x3)
equations used for the simulation of dry convective

motions. The system used was the following:
d(pu) | D op, . _omy
at +ax] (pulu])"l_axl—'_gpali’f_“ afl:j

Op, O B
3t o, (pu,)=0

260, > O,
ot Tog, P03,

where pressure is obtained [rom the equation of state in
the form
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p_ Epﬁ)
Do Dy

and the friction-diffusion terms were of a similar lorm,
though more complex, than those described above.

The grid scheme outlined above is clearly applicable to
this set, where the linear density term in the vertical
momentum equation must be interpolated. In this case
it is possible to interpolate density either spatially or time-
wise. Integrations have been successfully performed
using two-point (vertical) and four-point spatial interpo-
lation and linear time interpolation, the results of which
will be reported elsewhere.

If the above set of equations were modified to exclude
sound wave propagation, by elimination of the time
derivative of density and formation of a vorticity equa-
tion, it would then not be practical to apply the proposed
system. On the other hand, it can evidently be applied
to a multi-level hydrostatically filtered baroclinic model,
provided that the vertically integrated divergence is not
constrained. The applicability of the system depends not
on the scale or complexity of the model but only on the
absence of a constraining elliptic differential equation.

6. SUMMAKRY

It has been demonstrated theoretically and, in one
particular case, practically, that the staggered grid system
here proposed can be advantageously applied in the inte-
gration of purely marching type hydrodynamiec-thermo-
dynamic models. The method is of a similar type to
Eliassen’s but essentially opposite in its basic principles,
in that here the linear terms may be interpolated, spatially
or perhaps preferably in time, while the advective terms
are applied with centered differencing in the conservation
form. Physical considerations suggest the abstraction of
energy from grid-scale motions by parametric simulation of
eddy exchange processes, and Smagorinsky’s suggested
method for doing this seems to be sufficient for mainte-
nance of computational stability. The essential features
of the system have been described within the framework
of a rotating incompressible barotropic fluid model with a
free surface, while its practical application has been to a
somewhat more complex model of a compressible fluid
with thermal conveection.
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